Estimation of a k-monotone density: characterizations, consistency and minimax lower bounds.

نویسندگان

  • Fadoua Balabdaoui
  • Jon A Wellner
چکیده

The classes of monotone or convex (and necessarily monotone) densities on ℝ(+) can be viewed as special cases of the classes of k-monotone densities on ℝ(+). These classes bridge the gap between the classes of monotone (1-monotone) and convex decreasing (2-monotone) densities for which asymptotic results are known, and the class of completely monotone (∞-monotone) densities on ℝ(+). In this paper we consider non-parametric maximum likelihood and least squares estimators of a k-monotone density g(0).We prove existence of the estimators and give characterizations. We also establish consistency properties, and show that the estimators are splines of degree k - 1 with simple knots. We further provide asymptotic minimax risk lower bounds for estimating the derivatives[Formula: see text], at a fixed point x(0) under the assumption that [Formula: see text].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of a K − Monotone Density , Part 1 : Characterizations , Consistency , and Minimax Lower

Shape constrained densities are encountered in many nonparametric estimation problems. The classes of monotone or convex (and monotone) densities can be viewed as special cases of the classes of k−monotone densities. A density g is said to be k−monotone if (−1)g is nonnegative, nonincreasing and convex for l = 0, . . . , k−2 if k ≥ 2, and g is simply nonincreasing if k = 1. These classes of sha...

متن کامل

A Two Stage k-Monotone B-Spline Regression Estimator: Uniform Lipschitz Property and Optimal Convergence Rate

This paper considers k-monotone estimation and the related asymptotic performance analysis over a suitable Hölder class for general k. A novel two stage k-monotone B-spline estimator is proposed: in the first stage, an unconstrained estimator with optimal asymptotic performance is considered; in the second stage, a k-monotone B-spline estimator is constructed by projecting the unconstrained est...

متن کامل

Consistency of the Maximum Product of Spacings Method and Estimation of a Unimodal Distribution

The first part of this paper gives some general consistency theorems for the maximum product of spacings (MPS) method, an estimation method related to maximum likelihood. The second part deals with nonparametric estimation of a concave (convex) distribution and more generally a unimodal distribution, without smoothness assumptions on the densities. The MPS estimator for a distribution function ...

متن کامل

A Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator

In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...

متن کامل

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistica Neerlandica

دوره 64 1  شماره 

صفحات  -

تاریخ انتشار 2010